Indexing the Function: An Efficient Algorithm for Multi-dimensional Search with Expensive Distance Functions

نویسندگان

  • Hanxiong Chen
  • Jianquan Liu
  • Kazutaka Furuse
  • Jeffrey Xu Yu
  • Nobuo Ohbo
چکیده

Indexing structures based on space partitioning are powerless because of the well-known “curse of dimensionality”. Linear scan of the data with approximation is more efficient in high dimensional similarity search. However, approaches so far concentrated on reducing I/O, ignored the computation cost. For an expensive distance function such as Lp norm with fractional p, the computation cost becomes the bottleneck. We propose a new technique to address expensive distance functions by “indexing the function” by pre-computing some key values of the function once. Then, the values are used to develop the upper/lower bounds of the distance between each data and the query vector. The technique is extremely efficient since it avoids most of the distance function computations; moreover, it does not spend any extra storage because no index is constructed and stored. The efficiency is confirmed by cost analyses, as well as experiments on synthetic and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک روش مبتنی بر خوشه‌بندی سلسله‌مراتبی تقسیم‌کننده جهت شاخص‌گذاری اطلاعات تصویری

It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...

متن کامل

Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm

In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...

متن کامل

On Tighter Inequalities for Efficient Similarity Search in Metric Spaces

Similarity search consists of the efficient retrieval of relevant information satisfying user formulated query conditions from a database with prebuilt indexing structures. Since the evaluation of the distance functions between queries and indexed objects is often computationally expensive, there have been many attempts to build indexing structures that use as few distance computations as possi...

متن کامل

AN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM

Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...

متن کامل

A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009